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ABSTRACT

To improve radiative transfer calculations for inhomogeneous clouds, a consistent means of modeling inho-
mogeneity is needed. One current method of modeling cloud inhomogeneity is through the use of fractal param-
eters. This method is based on the supposition that cloud inhomogeneity over a large range of scales is related.
An analysis technique named wavelet analysis provides a means of studying the multiscale nature of cloud
inhomogeneity. In this paper, the authors discuss the analysis and modeling of cloud inhomogeneity through the
use of wavelet analysis.

Wavelet analysis as well as other windowed analysis techniques are used to study liquid water path (LWP)
measurements obtained during the marine stratocumulus phase of the First ISCCP (International Satellite Cloud
Climatology Project) Regional Experiment. Statistics obtained using analysis windows, which are translated to
span the LWP dataset, are used to study the local (small scale) properties of the cloud field as well as their time
dependence. The LWP data are transformed onto an orthogonal wavelet basis that represents the data as a number
of times series. Each of these time series lies within a frequency band and has a mean frequency that is half the
frequency of the previous band. Wavelet analysis combined with translated analysis windows reveals that the
local standard deviation of each frequency band is correlated with the local standard deviation of the other
frequency bands. The ratio between the standard deviation of adjacent frequency bands is 0.9 and remains
constant with respect to time. This ratio defined as the variance coupling parameter is applicable to all of the
frequency bands studied and appears to be related to the slope of the data’s power spectrum.

Similar analyses are performed on two cloud inhomogeneity models, which use fractal-based concepts to
introduce inhomogeneity into a uniform cloud field. The bounded cascade model does this by iteratively redis-
tributing LWP at each scale using the value of the local mean. This model is reformulated into a wavelet
multiresolution framework, thereby presenting a number of variants of the bounded cascade model. One variant
introduced in this paper is the ‘‘variance coupled model,”’ which redistributes LWP using the local standard
deviation and the variance coupling parameter. While the bounded cascade model provides an elegant two-
parameter model for generating cloud inhomogeneity, the multiresolution framework provides more flexibility
at the expense of model complexity. Comparisons are made with the results from the LWP data analysis to

3013

demonstrate both the strengths and weaknesses of these models.

1. Introduction

The effect of clouds on radiative transfer has been
shown to have a significant influence on model results.
The magnitude of the radiative forcing effect of clouds
has been studied during the Earth Radiation Budget
Experiment (ERBE) and the International Satellite
Cloud Climatology Project (ISCCP). Comparisons be-
tween satellite data and general circulation model re-
sults have shown discrepancies that are due in part to
how clouds are represented in these models. Currently,
a cloud layer is modeled as a homogeneous plane-par-
allel feature that occupies a certain percentage of a
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model grid box. Although this provides a reasonable
first-order approximation for the purpose of radiative
transfer, significant errors can be introduced by not in-
corporating cloud inhomogeneity. As shown by Harsh-
vardhan and Randall (1985), cloud layers with iden-
tical mean liquid water path (LWP) can have dramat-
ically different albedos. Methods of calculating
radiative transfer in inhomogeneous media have been
developed by Davies (1978), Stephens (1988), Ga-
briel et al. (1993), Evans (1993), and others and have
been used to study the magnitude of bias due to cloud
inhomogeneity (e.g., Cahalan 1989; Lovejoy et al.
1990; Kobayashi 1991). Data collected during the ma-
rine stratocumulus phase of FIRE [First ISCCP (Inter-
national Satellite Cloud Climatology Project) Regional
Experiment] indicate that cloud inhomogeneity re-
duces cloud albedo by 10% or more (Cahalan et al.
1994a). Though observational errors in cloud albedo
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often exceed 10%, such a bias can have a noticeable
effect on climate model predictions (Cahalan and Wis-
combe 1992). Having an even larger impact on remote
sensing, the effect of cloud inhomogeneity on radiation
thus merits careful study.

The purpose of this work is to model cloud inho-

mogeneity based on LWP data derived from the sur-
face-based microwave radiometer during the marine
stratocumulus phase of FIRE ( Snider 1988 ) with even-
tual application to radiative transfer calculations. Al-
though analysis of this LWP data has been done by
Cahalan et al. (1994a), we extend their work by ap-
plying the technique of wavelet analysis. This approach
not only provides information about the amount of in-
homogeneity present at different temporal and spatial
scales but also provides a multiresolution framework
for modeling cloud inhomogeneity. This wavelet mul-
tiresolution framework is a generalization of Cahalan’s
bounded cascade (BC) model and provides a means of
changing the statistical properties of the model yet
maintaining the multiscale nature of the LWP inho-
mogeneity. '
° Recent approaches to the study of cloud inhomoge-
neity have drawn upon the popular topic of fractals and
nonlinear dynamics. The connection of cloud fields to
fractal concepts was made by Lovejoy (1982), who
observed that cloud fields have a constant perimeter
fractal dimension of 1.35 over areas ranging from 1 to
1000 km?. Hentschel and Procaccia (1984) linked the
fractal dimension to the turbulent diffusion involved in
cloud development. Within this framework it is as-
sumed that certain properties are invariant with respect
to scale and that it is possible to derive features at one
scale knowing the properties of the cloud at a larger
scale. The connection between scales does not provide
a deterministic representation of the smaller scale but
rather a possible realization of the smaller scale that is
statistically consistent with observed large-scale vari-
ations. This connection has also been observed in spec-
tra of wind speed and potential temperature analyzed
by Gage and Nastrom (1986), who also observed a
change in scaling at a few hundred kilometers. The re-
lationship between scales also changes for areas
smaller than 1 km? (Cahalan and Joseph 1989), where
the scaling exponents depend on cloud type and bright-
ness threshold.

Simple macrophysical cloud models have been de-
veloped that implement scaling properties. These mod-
els are phenomenological rather than based on the
equations of fluid flow and thermodynamics and are
designed to give a simple representation of the inho-
mogeneity within the cloud for purposes of calculating
the cloud’s radiative properties. Schertzer and Lovejoy
(1987) considered a general class of multiplicative cas-
cades. Cahalan (1989) studied the radiative properties
of a one-parameter multifractal generated by such a
cascade. Davis et al. (1990) focused on the thick cloud
limit of a similar scaling model having a single fractal
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dimension. Using LWP data obtained during the ma-
rine stratocumulus phase of FIRE, Cahalan developed
a two-parameter fractal model for studying inhomo-
geneity effects (Cahalan and Snider 1990). This model
redistributes LWP within a uniform cloud through an
iterative cascade process that generates inhomogeneity
at all spatial scales. Here we reformulate this model
within a multiresolution framework. This provides a
broader framework for modeling cloud inhomogeneity
and leads to a number of variants, such as the variance-
coupled (VC) model introduced in this paper. These
multiscale statistical models generate features at dif-
ferent spatial scales and then combine these features
using an inverse wavelet transform.

To accurately model the cloud inhomogeneity pres-
ent at different scales, we focus on correlations between
features of different scales as a function of time and
frequency (or the analogous function of position and
wavenumber). We first present a conventional “‘win-
dowed’’ analysis in which the time-dependent relation-
ship is studied by calculating statistics for data within
a window that is translated across the length of the
entire dataset. The time dependence of the frequency
component is studied by performing a Fourier trans-
form on the data located within each analysis window.
Although the windowed analysis provides useful in-
formation about the temporal and frequency character-
istics of the LWP dataset, it does not optimize the win-
dow size to the frequency being analyzed. An opti-
mized window function balances the localization of
temporal information with the localization of frequency
information.

Wavelet analysis was designed to optimize the trade-
off between temporal and frequency localization. This
is done by defining an oscillatory function of finite
length. Convolution of this function with the dataset
provides a time-dependent analysis of the data over a
given band of frequencies. By stretching or compress-
ing this oscillatory function, the mean frequency of the
frequency band extracted by the wavelet analysis is de-
creased or increased, respectively. Windowed Fourier
analysis can be used to extract similar information;
however, the size of the analysis window is indepen-
dent of the frequency being analyzed. Therefore, the
low-frequency component, which may consist of only
one oscillation within the sampling window, is not sam-
pled to the same degree as the high-frequency com-
ponent, which consists of many oscillations within the
sampling window. For wavelet analysis the effective
window size changes with the mean frequency of the
band being analyzed so that a similar number of oscil-
lations are sampled. The Daubechies wavelets used in
this study (Daubechies 1988) have an additional com-
putational advantage over windowed Fourier analysis
in that an orthogonal decomposition of the dataset is
made using an efficient iterative algorithm based on
multiresolution analysis. This is not true of a windowed
Fourier analysis since the efficiency of the fast Fourier
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transform is reduced by including a tapered window to
the analysis. Reconstruction of the original data is also
difficult for a windowed Fourier analysis since over-
lapping windows are needed to account for the infor-
mation lost while using the tapered window.

This paper is presented in five sections. Section 2
provides a description of the windowed and wavelet
analyses used in this work. Section 3 describes the
LWP dataset and presents the results of the analyses on
this dataset. In section 4 the BC model is recast within
the multiresolution framework. Within this context the
VC model is introduced and compared to the BC
model. Finally, section 5 discusses the primary obser-
vations made during the LWP analyses and their rela-
tionship to the modeling of cloud inhomogeneity.

2. Windowed analysis

In this section we describe two approaches to deter-
mine the inhomogeneity within different frequency
bands as a function of time and frequency. Since the
data are not statistically stationary, the global statistics
of the dataset are not representative of the statistics at
any particular time within the dataset. Therefore, it is
necessary to select subsets of the data over which the
stationarity assumption is approximately satisfied. In
the first approach, the time dependence of the dataset
is studied by translating a window of fixed width over
the entire dataset and computing statistics as a function
of the window location. We will find that these win-
dowed statistics provide useful information about the
time dependence of the LWP dataset. By performing a
Fourier transform at each window location, information
about the frequency content is also obtained. The sec-
ond approach uses a different windowing technique
named ‘‘wavelet analysis,”” which partitions the data
into a series of frequency bands. Since the wavelet
transform retains time information, the time depen-
dence of inhomogeneity within each frequency band
can be studied. To facilitate comparison between the
two approaches, statistics from the result of the wavelet
transform are calculated using translated windows
matching those of the first approach. This provides
common ground for discussing the nature of inhomo-
geneity present within different frequency ranges.

a. Windowed statistics

The windowed statistics calculated from the LWP
dataset include the first three moments of the data: the
mean, standard deviation, and skewness. Although
these statistics do not completely determine the prob-
ability density function (PDF) of the data within the
analysis window, they do constrain the shape of the
PDF and provide useful statistics for modeling inho-
mogeneity. Since these statistics are calculated for a
data window of limited width, they represent a local
statistic rather than a global statistic of the dataset. Use
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of the term ‘‘mean,”’ for example, will imply a *‘local
mean’’ unless otherwise noted.

The local statistics calculated for the LWP dataset use
64-min windows that are translated by 32-min incre-
ments. Since the sampling rate of the LWP dataset is 1
min, a window of this width provides a sufficient statis-
tical sample. This window size also restricts the segment
of analyzed data to a length that nearly satisfies the sta-
tionarity assumption. Changes in the statistics of the LWP
data are primarily due to a diurnal cycle, although a syn-
optic trend is also present. It is assumed that the solar
forcing of the cloud layer does not change significantly
over the length of 1 h, and therefore, a 64-min window
is small enough to ensure stationarity. The validity of the
stationarity assumption is studied by adjusting the win-
dow width from 0.5 h to 8 h, where the later width clearly
violates the stationarity assumption.

The local statistics are also studied using a composite
PDF that uses information from all of the analysis win-
dows. A composite PDF is used since binning noise for
a 64-point windowed analysis may obscure trends
within the PDF. A composite PDF is generated by stan-
dardizing the data within each analysis window and
then combining all of the standardized data points into
a single PDF. A standardized data point W’ is calcu-
lated using the equation

W —
wo=1—H
g;

(1)

where p; and o, are, respectively, the mean and stan-
dard deviation of the ith analysis window and W is the
original value of the data point. This composite PDF
indicates how the local PDF compares to a normal dis-
tribution. Since the mean is removed and the standard
deviation is set to 1, only the skewness and higher-
order moments affect the shape of this PDF. The use-
fulness of the composite PDF is limited to the assump-
tion that the higher-order moments do not significantly
change in sign over the extent of the entire dataset. For
example, if the data distribution has local positive
skewness, the predominant weighting of the composite
PDF is to the left of zero (left of the mean). However,
if a similar number of data windows having both pos-
itively and negatively skewed statistics are combined,
the composite PDF may be symmetric about zero, in-
dicating a nonskewed distribution. The composite
PDFs used in this study are generated using 200 equally
spaced bins ranging from —4 to +4 standardized de-
viations about the mean.

Frequency information is calculated for each win-
dow by performing a Fourier transform. To avoid prob-
lems due to boundary conditions at the edges of the
analysis window, a Parzen’s window is used. Neglect-
ing to use a windowing function affects the relationship
between frequencies since there is a false high-fre-
quency component introduced into the analysis (Press
et al. 1992). The plot of the power spectrum provides
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FiG. 1. Plot of the (a) D8 wavelet function, (b) its Fourier transform, (c) the corresponding scale function,
and its (d) Fourier transform.

a convenient means of studying the relationship be-
tween energy and frequency. Since the plot of the
power spectrum is log—log, the energy as well as the
frequency is normalized to a reference. Therefore, the
slope of this plot yields a dimensionless quantity. From
turbulence theory a constant negative slope indicates
that the energy contained in the large-scale features
cascades into the smaller-scale features: At the smallest
scale, the kinetic energy is dissipated away as heat. In
our analysis we assume that the inhomogeneity present
at each timescale is related to the energy of the power
spectrum at its corresponding frequency range. Since
the LLWP data used in this analysis représent a vertically
integrated quantity, this inhomogeneity represents the
horizontal nonuniformity of such processes as entrain-
ment and vertical motion. For modeling purposes the
slope of the power spectrum provides an important pa-
rameter for applying scaling properties.

b. Wavelet analysis

Wavelet analysis is used to separate features into dif-
ferent frequency bands while maintaining temporal in-
formation. This makes it possible not only to study the

relationship between the relative amounts of energy
present in each frequency band but also to study any
temporal dependence that might exist in this relation-
ship. This is done by performing an inner product be-
tween the LWP data and each member of a wavelet
family. Each member of a wavelet family ¢, .(¢,) is
related to the others by a combination of translations n
and scalings (stretching of the function) m. Since nei-
ther of these operations affects the relative shape of the
wavelet, this analysis extracts features that are similar
in shape. This is well illustrated in Weng and Lau
(1994), where examples are given for both continuous
and orthogonal wavelets.

The wavelet family used for analysis in this paper is
based on the D8 wavelet (Fig. 1a). This orthogonal
wavelet family was developed by Daubechies (1988)
and is defined by eight ‘‘taps’” (Table 1). These taps
are used as weighting coefficients to extract the highest-
frequency content from the data. The transform

dl(tn/2) = <l//l,n(tn)7 S()(t,,)) = 2 giso(tn + i)

i=0

(niseven) (2)

TaBLE 1. Tap values g; and h; for the Daubechies D8 wavelet and scale functions, respectively.

i

0 1 2 3 4 5 6 7
8 0.0106 0.0329 —0.0308 —0.1870 0.0280 0.6309 -0.7148 0.2304
h; 0.2304 0.7148 0.6309 —0.0280 —-0.1870 0.0308 0.0329 —0.0106

Taken from Daubechies (1992).
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multiplies the eight taps g; to the data series s,(2,) in
order to generate the highest frequency detail d,(¢,,,)
of the data series. The value of n is restricted to even
values since the family of orthogonal wavelet trans-
forms are translated two data points with respect to
each other. As a result, the series generated by this
transform is only half the length of the original data.
This transform analyzes only the data at the smallest
scale, which corresponds to the highest-frequency
range. When the transform in Eq. (2) is applied itera-
tively to multiple scales of the data, analysis by the
discrete values of the taps are equivalent to analysis
done by the nearly continuous function seen in Fig. la
(Daubechies 1988). Although the transform behaves
as a high-pass filter at the smallest timescale, at any
larger timescale the transform performs a bandpass fil-
tering of the data as shown by the Fourier transform of
the D8 wavelet in Fig. 1b.

In general, the taps for Daubechies wavelets are de-
fined such that members of the wavelet family are or-
thogonal with each other. This is true only if the func-
tions are translated by increments of two data points
and the scale is changed by a factor of 2. These restric-
tions allow the data to be expressed as a series of dyadic
scales (Weng and Lau 1994). Mahrt (1991) discusses
the statistics related to analysis with the Haar function,
which is the simplest orthogonal wavelet. As with the
Haar function, the D8 wavelet preserves energy and
therefore allows a comparison of statistics between
scales. In this study the D8 wavelet is chosen over the
Haar wavelet so that leakage between frequency bands
is minimized. Since the D8 wavelet is not a perfect filter
function, there still exists some frequency leakage rep-
resented by the lobes at 3 and 5 Hz in Fig. 1b. The
improved frequency characteristic is at the expense of
some loss of temporal localization.

As seen in Fig. 1c, the D8 scale function ¢,, ,(2,) is
defined by reversing the order of the D8 wavelet taps
and negating each even tap (Table 1). This function
performs a weighted sum of the data points by the for-
mula

Sl(tn/Z) = <¢l.n(tn)v SO(tn)> = 2 hiso(tn + l)

i=0

(nis even),

(3)

which generates the smoothed data s,(¢,,,). This data
has a resolution that is reduced by a factor of 2, and
therefore, the transform acts as a low-pass filter as
shown by the Fourier transform of the D8 scale func-
tion (Fig. 1d). As with the orthogonal wavelet trans-
form, the translations are incremented by 2, thereby
generating a series that is half the length of the original
dataset.

Due to the orthogonal nature of the wavelet trans-
form, any information lost by the wavelet transform is
maintained by its associated scaling transform. There-
fore, the two series generated by these two comple-
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mentary transforms can be used to perfectly reconstruct
the original dataset through the use of the inverse trans-
form

4
so(ty + k) = 2, goinsdi (82 = ) + hoiiseSi £z — )

i=0

(k=0,1) (niseven). (4)

From this notation it is seen that the same taps used in
the forward transform are used to determine the weigh-
ing of particular values of the smoothed, s,(¢,,,), and
detail, d,(t,,,), data to perform the inverse transform.
It is also evident that the even taps are used for recon-
structing the even locations of the data series and the
odd taps for the odd locations.

Although a D8 wavelet transform can be defined
for scales other than the smallest scale, multiresolu-
tion analysis (Mallat 1989) combines the wavelet
and scale transforms to iteratively generate the wave-
let transforms for larger scales. Since the D8 scale
transform decreases the number of data points by a
factor of 2, this low-pass or averaging transform ef-
fectively increases the scale of the resultant coeffi-
cients by a factor of 2. Therefore, a wavelet transform
performed on the resultant components of the scale
transform s,(#,,2) is the same as performing the
wavelet transform of the next largest scale on the
original data s5¢(z,).

Notation for the multiresolution analysis with the D8
wavelet is a generalization of Eqs. (2), (3), and (4).
The scale transform

snn-l(tn/2) = <¢m.n(tn)9 S,,,(t,,)) = Z hism(tn + l)

i=0
(niseven) (5)

reduces the resolution of the smoothed data s,,(2,)
obtained from the previous level of the scale trans-
form. Once again, notice that the length of the (m
+ 1)th-level scale transform is half the length of the
mth-level scale transform. The mth-level scale trans-
form spans the original data series with N/2" points
since translations are by increments of 2 and each
change in scale increases the translation distance by
an additional factor of 2. In this case N is the number
of points present in the original data series. The
wavelet transform

dm+|(tn/2) = <¢m.n(tn)a sm(tn)> = Z gisln(tn + l)

i=0
(niseven) (6)

removes the detail from the smoothed data obtained
from the previous level of the scale transform. This
iterative definition for the wavelet and scale trans-
form makes computation very efficient since larger
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FiG. 2. Diagram of multiresolution analysis.

levels of the transform are performed on a reduced
length of the dataset. The inverse function

4
Sm(tn + k) = 2 g2i+kdm+l(tn/2 - l)

i=0
+ hoiiSmer (82 — i) (k=0,1;niseven) (7)

is also defined iteratively and provides perfect recon-
struction given that infinite precision is maintained in
the transform.

This iterative transform process is illustrated in Fig.
2, where the multiresolution analysis is performed on
data sampled at 1-min intervals to generate smoothed
and detail information at the 2-, 4-, and 8-min scales.
The original LWP dataset, which has a resolution of 1
min, is represented by the rectangle labeled s,(¢,). Per-
forming the scale transform with the scaling function
&, , reduces the resolution (increases the scale) of the
data by a factor of 2 and generates the smoothed data
5:(%,,»). The index t,,, is used since the transformed
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FiG. 3. Frequency ranges of multiresolution analysis
for the LWP data.

data have only half the number of points of the LWP
data while spanning the same time period. Therefore,
each data point in s,(¢,,,) represents a local 2-min
average of the LWP dataset. Although an arbitrary
position index of n could be used, Fig. 2 uses the index
1,72~ to simplify the collocation of features from the
scale m, with a location within the original LWP data-
set. Since the wavelet and scale function complement
each other, the detail lost by this reduction in resolution
is retained by the detail d,(z,,,) obtained through the
wavelet transform. To obtain the next lowest resolution
(next largest scale) the multiresolution process is re-
peated on the transformed dataset s, (#,,,) to obtain the
smoothed data s5,(¢,,4) and the detail data d,(t,,4). At
this scale features are representative of the 4-min time-
scale and each transformed data series has only a quar-
ter of the number of points of the LWP dataset. This
process is repeated once again on s, (#, 4 ) to obtain both
the smoothed, s:(¢,,3), and the detail, d;(t,,3), datasets
at the 8-min timescale.

Continuing this processes to the largest scale allows
the original dataset to be represented by a series of
wavelet transforms that span all possible scales. Since
the scale transform can be represented by the scale and
wavelet transform at the next largest scale, the concept
of the scale transform serves only as an intermediate
step for iteratively generating the wavelet transform at
all scales. At the largest scale a single component rep-
resents the scale transform, and its value corresponds
to the global average of the LWP dataset. Since this
analysis is based on an orthogonal decomposition, all
information from the LWP dataset is retained, and it is
possible to reconstruct the original dataset from the
components of the wavelet transform at all scales.

The multiresolution analysis represented in fre-
quency space reveals the trade-off between frequency
and temporal localization. Figure 3 illustrates the fre-
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quency ranges represented by each scale of the wavelet
analysis. At the smallest scale the wavelet transform
acts as a high-pass filter where the cutoff frequency is
at half of the Nyquist frequency. Since the sample rate
of the LWP data is 1 min, the Nyquist frequency is
30 h ™! and the cutoff frequency of the first level detail
d,(t,,2) is 15h™". The length of time represented by
each component of the first level detail is 2 min. At the
next largest scale each component of the wavelet anal-
ysis represents 4 min, while in frequency space these
components represent information that ranges between
7.5 and 15 h™'. In a time—frequency phase space rep-
resentation the product of the time localization and the
frequency localization remains constant. Therefore, as
the scale of the wavelet analysis increases, lower fre-
quencies are analyzed, the range of frequencies con-
tributing to the analysis decreases, and the number of
original data points contributing to the analysis in-
creases.

From this presentation of the multiresolution analy-
sis an obvious limitation exists that affects data anal-
ysis. Since the change in scale is limited to factors of
2, a translation of the dataset by one position will
change the representation of the wavelet transform of
the data. In addition, if any one frequency has a strong
influence on the dataset, the wavelet analysis will at-
tribute it to a range of frequencies or, worse yet, to two
frequency ranges when the frequency lies near a tran-
sition between two scales. Since the scales analyzed by
the wavelet transform are powers of 2 of the resolution
of the original data, the analyzed scales cannot be
shifted apart from remapping the LWP data into a dif-
ferent sampling rate. Although many of these problems
can be resolved by using nonorthogonal wavelets, these
problems are not prohibitive to the analysis used in this
research. Since statistics are calculated from the wave-
let transform, any change in the specific representation
does not significantly change the statistical results. The
features present in the LWP data used in this research
are the result of turbulent processes that do not favor a
specific frequency over another. The only predominant
frequency present in the data is the diurnal cycle, and
any analysis at that scale violates the stationarity as-
sumption. The advantage of retaining the orthogonal
condition is that features present in the data cannot be
overrepresented in the wavelet analysis. This provides
grounds for comparing statistics contributed by differ-
ent scales without a bias due to one frequency having
a stronger contribution than originally present in the
data.

The correspondence between windowed analysis and
wavelet analysis is illustrated in Fig. 4. The window I,
is chosen to be about 1-h wide (64 points) and is trans-
lated by about 0.5 h (32 points) increments. Although
there is overlap between adjacent windows, this permits
a larger number of windowed statistics to be generated.
Of comparable size to the data windows, the fourth-
level D8 wavelets ,,, are translated by only 16 points.
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FiG. 4. Correspondence between windowed analysis
and wavelet analysis.

In addition to the difference in translation, the weight-
ing of the data is equal over the window I',, while
transforms with the ,, wavelets have their largest
weighting based on the middle half of the window. An-
alyzing inhomogeneity of the data over a window T,
includes all scales smaller than the window size. How-
ever, by using the s, ¥4,,, and 5, wavelet functions,
inhomogeneity is partitioned into a series of scales that
lie in the 32-, 16-, and 8-min scales, respectively. Al-
though the size of the windowed analysis can be ad-
justed to these different sizes, it does not provide an
orthogonal representation between scales and therefore
does not provide a simple method for reconstructing
the original dataset.

c. Wavelet statistics

The important statistics calculated from the wavelet
analysis are the standard deviation and the Markov pa-
rameter for each level of detail. The wavelet transform
partitions the inhomogeneity of the data into a number
of time series each associated with a different fre-
quency band. The windowed analysis discussed in sec-
tion 2a is applied to each of the wavelet-generated time
series to calculate a standard deviation. This statistic is
equivalent to the square root of Gamage and Hagel-
berg’s (1993) wavelet variance. This scale-dependent
standard deviation is calculated for the first-level detail
d,\(t,,2) through the third-level detail d,(t,,5). Since
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each level of detail has half the number of points as the
preceding level, the number of points used for calcu-
- lating the detail standard deviation is halved. For a 64-
point window, the standard deviation of the first-level
detail d, (,,,) is calculated using 32 points, the second
level using 16 points, and the third level using 8 points.
Due to the limited statistics for calculating the standard
deviation of the third-level detail, analysis focuses on
the first two levels and the relationship between them.

The ratio of mth-level standard deviation to (m
+ 1)th-level standard deviation is related to the slope
of the power spectrum. Since the wavelet transform
separates data into different frequency ranges, it is pos-
sible to relate a particular level of the detail to a par-
ticular portion of the Fourier spectrum. For data that
has a linear power spectrum, the ratio of standard de-
viation between adjacent levels of the wavelet trans-
form should be constant. This in turn is related to the
self-similar or self-affine nature of the data. The rela-
tionship between the ratio of standard deviation
between levels and slope of the power spectrum is
based on observations while conducting our research
and still needs to be quantified by a mathematical re-
lationship.

An additional statistic for the mth-level detail is the
Markov parameter. This parameter is equal to the lag
1 autocorrelation of the mth-level detail. Since each
level of the detail spans a limited frequency band, the
Markov parameter measures the correlation of inho-
mogeneity at a particular scale. The wavelet transform
is not a perfect filter, and therefore, it is possible for
structures at the next largest scale to generate autocor-
relation at the level being analyzed. The presence of
autocorrelation at all scales affects the slope of the
power spectrum and complicates the mathematical re-
lationship between the ratio of standard deviation be-
tween levels and the slope of the power spectrum. The
presence of negative autocorrelation at all scales causes
a time series to be more intermittent than one with pos-
itive autocorrelation given that the slope of the power
spectrum is forced to be the same. The LWP dataset
used in this analysis has intermittent features as re-
ported by Davis et al. (1994) and, therefore, makes the
Markov parameter important for modeling applica-
tions. The term autocorrelation or Markov parameter is
used interchangeably, since only the lag 1 autocorre-
lation is used in this study.

3. Vertically integrated liquid water data
a. Description

The data used for this study were obtained during
the marine stratocumulus phase of FIRE. The intensive
field operation was conducted from 1 July through 19
July 1987 and consisted of ground-based, airborne, and
satellite measurements. The ground-based instruments
were stationed on San Nicolas Island, which is located
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100 km southwest of Los Angeles. One goal of the
experiment was to improve the characterization of
clouds for radiative transfer studies (Cox et al. 1987).
The LWP data are well suited for this since they pro-
vide a lengthy record of cloud inhomogeneity and con-
tain changes therein due to time development.

The LWP data used in this study were obtained from
a ground-based, upward-looking microwave radiome-
ter. Derived from an algorithm using the 20.6- and
31.65-GHz channels, the LWP data have an absolute
accuracy of 20% (Albrecht et al. 1990). Since the re-
trieval method may contain a bias that affects the ab-
solute amount of LWP, retrieval of variations in the
LWP can be known to a greater accuracy of 10% (Ca-
halan and Snider 1989). Consisting of 1-min averages
of 10-Hz data, this LWP dataset runs nearly continu-
ously for 19 days. Missing data gaps of several hours
are present in the data along with 2-min gaps approx-
imately every 4 h, which are used for calibration of the
equipment.

Since the LWP measurements are from a zenith view
of the sky, the data series records not only time devel-
opment during the course of the 19 days but also spatial
development as the clouds advect over the instrument.
The instantaneous sampled volume for the microwave
radiometer is a truncated cone that has an average di-
ameter of 21 m and depth of 100 m, assuming an av-
erage cloud base of 425 m during the experimental pe-
riod (Blaskovic et al. 1991). Assuming an average
wind speed at cloud height of 5 m s~', the 1-min mea-
surements of the microwave radiometer are an average
of LWP over a 300 m X 21 m X 100 m section of
cloud. Using 64-min analysis windows, the spatial ex-
tent for each window corresponds to a 19.2-km section
of cloud. On this timescale the data are assumed to be
stationary as discussed in section 2a, and therefore,
variability within the window is assumed to be the re-
sult of spatial structure rather than time development
of the cloud field.

b. Analysis

The LWP data contain unusable portions due to
missing data and clear skies. Using only data from 9
through 17 July eliminates most of these unusable sec-
tions. The bias due to the remaining missing data is
reduced by linearly interpolating over these short gaps.
Since the greatest variability is found on timescales
long compared to the gaps, the interpolation introduces
little error. Observations of LWP below a threshold of
10 g m~? are assumed to be unreliable due to the bias
present in the microwave retrieval algorithm for thin
clouds and due to the presence of clear skies. To avoid
problems due to poor sampling, any window containing
more than 25% clear skies, thin clouds, or missing data
is rejected. When calculating the mean, standard de-
viation, skewness, and PDF, only cloudy points are
used within each window. However, when calculating
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FiG. 5. Time development of the LWP data’s local (a) mean and (b) slope of the power spectrum.

the Fourier transform and any statistic related to the
wavelet transform, all data points are used since con-
tinuity between adjacent points is important. For these
last two calculations, the original values are used since
it is expected that thresholding the data will introduce
a false high-frequency component to the data.

The mean of the LWP has a strong diurnal cycle as
seen in Fig. 5a. The mean is greatest just before sunrise
and reaches a minimum in the late afternoon. This vari-
ation in LWP is related to changes in both the cloud
base and cloud thickness (Albrecht et al. 1990). A syn-
optic trend is also present in the data as demonstrated
by the differences in the daily maximums of the LWP.

Although the mean of the LWP has a strong diurnal
dependence, the slope of the power spectrum (Fig. 5b)
is nearly time independent. As discussed in section 2a,
the slope of the power spectrum is related to the fre-
quency dependence of energy and therefore is related
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to the scale dependence of inhomogeneity. There are
fluctuations in the value of the power spectral slope;
however, there is no obvious trend in this statistic. Us-
ing 1-h analysis windows the slope has a mean value
of —1.75. This value remains at —1.75 for windows
that extend to 8 h in length, although a window of this
size violates the assumption of stationarity. For window
sizes beyond 8 h, the slope of the power spectrum is
affected by the diurnal cycle; however, the value of the
slope fluctuates about the same global value of —1.75.

The most important result of the LWP’s wavelet
analysis is the relationship between inhomogeneity at
different scales. The degree of inhomogeneity is related
to the fluctuations in the LWP and is quantified through
the statistic of standard deviation. The standard devia-
tion for the LWP data (Fig. 6a) consists of a diurnal
cycle with a daily peak value near 1200 UTC, which
corresponds to dawn. The standard deviation decreases
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FiG. 6. Time development of the LWP data’s local (a) standard deviation and standard deviation
of the level (b) 1, (c) 2, and (d) 3 wavelet transform.
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during the day to reach a minimum in late afternoon.
Due to the sampling rate of the microwave radiometer,
the frequencies present in this dataset range from O to
30 h™'. The first three levels of the wavelet analysis
partition the original dataset into the frequency ranges
of 15-30, 7.5-15, and 3.75-7.5 h~!. The standard de-
viation of these three levels (Figs. 6b—d, respectively)
corresponds well with the standard deviation of the
original dataset and with each other. The windowed
standard deviation also contains a synoptic feature that
has a time period of approximately 7.5 days. This syn-
optic feature also exists in the standard deviation of the
wavelet transform for levels 1, 2, and 3.

The correlation between inhomogeneity at different
scales is very strong and is not influenced by the diurnal
cycle. The correlation coefficient between level 1 and
level 2 standard deviation is 0.81. This implies that
66% of the changes in local standard deviation at the
2-min scale is explained by the changes in local stan-
dard deviation of the 4-min scale. At higher levels of
the wavelet transform the correlation coefficient be-
tween adjacent levels of standard deviation is also near
0.81. The ratio between level 1 and level 2 standard
deviation (Fig. 7a) is also time independent, although
there may be a dependence on the synoptic scale as
indicated by the slight increase in the ratio around days
13 and 14. This lack of time dependence is also ob-
served in the ratio of standard deviation between levels
2 and 3. Another important feature is that the ratio of
standard deviation is independent of which two adja-
cent scales are being compared.

The ratio of standard deviation between scales is ap-
proximately 0.9 and is valid up to the ratio of standard
deviation between levels 5 and 6. The ratio of standard
deviation between levels 6 and 7 drops to 0.7 and is
most likely due to the size of the analyzing window.
Although the ratio of standard deviation between levels
1 and 2 uses a 1-h window, the window size is doubled
at each increase of scale to ensure sufficient statistics.
The ratio of standard deviation between levels 6 and 7
depends on a window size of 32 h, which is influenced
by the synoptic trend of the data. Each wavelet coef-
ficient within this window is representative of 1 h for
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level 6 and 2 h for level 7. Therefore, the reduction in
the ratio of standard deviation between scales may be
a combined effect of the diurnal and synoptic trends of
the data. It is interesting that the ratio of standard de-
viation between scales remains unaffected by window
sizes up to 32 h, which is well beyond a reasonable
stationarity assumption.

As discussed previously, the windowed mean (Fig.
S5a) has a strong diurnal dependence, and this depen-
dence is positively correlated with the windowed stan-
dard deviation (Fig. 6a) by a correlation coefficient of
0.67. However, on the 2-min scale the correlation co-
efficient between the mean and the level 1 standard
deviation is 0.56. This means that only 30% of the
change in standard deviation at the 2-min scale is ex-
plained by the mean. This is made evident by taking
the ratio between the level 1 standard deviation and the
mean (Fig. 7b). This ratio is affected by the diurnal
cycle and has a minimum of 0.03 at dawn and a max-
imum of 0.1 in late afternoon. This ratio does not ap-
pear to contain a synoptic trend and therefore is useful
for modeling as long as the diurnal dependence is taken
into account. Although the ratio of standard deviation
between scales is a better predictor of small-scale in-
homogeneity, the ratio of standard deviation to mean
is useful when information about the inhomogeneity of
the LWP is unavailable.

The windowed Markov parameter for the first level
of the wavelet transform does not contain a diurnal cy-
cle. Having a mean value of —0.28, this statistic be-
comes less negative around 13 July, when the mean
LWP is small. This statistic is also time independent at
the second and third levels of the wavelet transform
and has mean values of —0.28 and —0.29, respectively.
Beyond these levels the statistic becomes less negative
and may be affected by diurnal influences. The auto-
correlation at each level of the wavelet transform in-
dicates that correlated structures exist at all the ana-
lyzed scales. This observation corresponds well with

the fractal concepts of self-similarity and self-affinity.

Since wavelet analysis restricts the inhomogeneity to a
given timescale, the autocorrelation is only indirectly
related to larger-scale structures within the cloud field.
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FiG. 7. Time development of the LWP data’s local (a) ratio of standard deviation between levels 1 and 2,
and (b) ratio between level 1 standard deviation and mean.
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Due to the existence of the Markov parameter, it is
important that any inhomogeneity model manifest this
time-independent statistic.

Unlike the statistics discussed previously, the skew-
ness of the LWP is both time and scale dependent with-
out any obvious connection to the time dependence of
the mean. From the 1-h analysis windows the skewness
fluctuates between —1 and +1 and has a mean skew-
ness of 0.1. When the analysis window size increases
to 2 h, the skewness increases to 0.28. Skewness at this
scale is less uniform and appears to have some time
dependence to it. Extending the analysis window to 4
h gives a global skewness of 0.41 and begins to reveal
the diurnal dependence of the skewness. The skewness
over this larger window has a weak diurnal dependence
that is also related to the mean LWP. When the mean
LWP remains relatively constant, the skewness is zero
or even negative. However, when the local LWP begins
to change, the skewness is positive. This appears to be
related to the nonlinear way in which cloud thickness
develops. When the cloud LWP increases, it does so at
a faster than linear rate. As a result, the PDF of LWP
over a set interval develops a long, positively skewed
tail. Likewise, as the cloud decreases in LWP, the dis-
sipation is faster than linear and the distribution of
LWP for a set interval is again weighted toward a thin-
ner section of cloud with a few thick sections of cloud.

The dependence of local skewness on analysis win-
dow size is best illustrated using the composite PDFs
for different window sizes. The composite PDF for a
1-h window (Fig. 8a) appears nearly Gaussian when
compared to a normal distribution. However, as the
window size increases, the largest weighting of the
PDF shifts to the left and begins to generate a longer
positive tail. This shift in the PDF is the result of vio-
lating the stationarity assumption since the statistics of
the cloud change significantly over 8 h due to diurnal
effects. For window sizes of 8 h (Fig. 8b) and larger,
the PDF becomes more lognormal, as reported by Ca-
halan and Snider (1990). Although the contribution of
positive skewness is present over the entire dataset, a
large amount of skewness exists on 17 July during a
drizzle event where the mean LWP becomes very large
over a short period of time.
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Since it can be argued that the PDF of the 1-h win-
dow is dominated by instrument noise and thereby pre-
dominantly Gaussian, an alternate composite PDF is
generated. The alternate PDF uses only windows that
have a standard deviation at least four times as large as
the expected standard deviation due only to noise. The
skewness dependence of the 1-, 2-, 4-, and 8-h alternate
PDFs is the same as the composite PDFs and therefore
indicates that this observation is not due to noise con-
tamination.

The last statistic to be discussed is the composite
PDF for the first-level wavelet transform (Fig. 9). The
wavelet transform is sensitive to inhomogeneity at a
particular scale, and therefore, the PDF of the wavelet
transform is related to the distribution of inhomoge-
neity at the corresponding scale. Using a 1-h analysis
window, the composite PDF (Fig. 9a) is symmetric
about the mean and has a shape similar to a normal
distribution. Since the PDF is peaked near the mean,
this distribution has positive kurtosis, which increases
with window size. We interpret this to mean that the
contribution of inhomogeneity at a particular timescale
is not evenly distributed over the window but is con-
centrated to smaller regions that contribute a dispro-
portionate amount of inhomogeneity to the window.
This description corresponds to the concept of an in-
termittent geophysical signal. As the window size in-
creases to 8 h, the localized contributions of inhomo-
geneity are better sampled and the PDF becomes more
kurtose (Fig. 9b). An 8-h window violates the station-
arity assumption and therefore raises the question
whether the increase in kurtosis is an indication of
cloud development or of better sampled intermittency.

Results from the microwave radiometer LWP anal-
ysis appear to be reasonable and provide a foundation
for comparison to inhomogeneity model results. Both
the ratio of standard deviation between scales and the
slope of the power spectrum are time independent and
appear to be related to each other, although the rela-
tionship has yet to be developed. The correlation of
standard deviation between adjacent levels is strong
and provides motivation for the development of a
wavelet-based cloud inhomogeneity model. This wave-
let-based model must also include the Markov param-
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eter since it indicates the presence of correlated struc-
tures at all timescales. On the smallest scale the
distribution of the LWP inhomogeneity is similar to a
normal distribution. Only as the window size includes
a significant amount of cloud development does a
strong positive skewness appear. This provides a basis
to determine the suitability of an inhomogeneity model
for a particular application.

4. Inhomogeneity models

The LWP inhomogeneity models used in this paper
are multiscale statistical models. Operating within the
framework of multiresolution analysis, values for the
detail information at each scale are statistically gener-
ated and then combined using an inverse wavelet trans-
form. The detail information d,,(t,,,») at scale m is
dependent on the smoothed information s,,(#, .~ ) of the
same scale and the detail information of lower resolu-
tions d,,, 1 (t,/2m+1), dpy12(t,2m+2), . .. . The values used
to initialize the lowest resolution and the relationship
between each scale provide the degrees of freedom for
fitting the model. Cahalan’s BC model uses the values
in §,,(t,,2») to generate d,,(t,,2n), while the VC model
uses d,, +1(t,,m+1) to generate d,,(2,,,m). Although each
model uses a different approach, both still fit within the
multiscale statistical framework.

a. Bounded cascade model

The BC model is a two-parameter model that uses
an iterative cascading process to generate inhomoge-
neity. Although the model is more thoroughly de-
scribed in Cahalan et al. (1994a), a brief discussion is
provided here. The BC model begins as a uniform
cloud of thickness W, which is equal to the mean of
the LWP. The first step of the cascade model moves a
fraction of LWP, f;, from one side of the cloud to the
other. The direction that the LWP fraction is moved is
arbitrary. Upon completion of the first level of the cas-
cade the cloud consists of two regions. The first has a
uniform thickness of W (1 — f;), while the second has
a uniform thickness of W (1 + f;). The cascade process
is repeated by moving a fraction f; from one side to the
other for each of the two new regions of cloud. This

results in four regions that have the following liquid
water amounts: W (1 +£)(1 +£), W(l + ) (1 = £),
W(l - f)(1+f),and W(1 — f;)(1 — f,). Each time
this process is repeated the number of regions is dou-
bled, thus adding inhomogeneity to the cloud. Since the
LWP is being redistributed, the mean LWP is con-
served, and only the distribution of LWP is changed at
each cascade. If the fraction moved at each cascade is
the same, f, = fi = f, = - - -, after an infinite number
of cascades the model will consist of an infinite number
of singularities with varying intensities. Although this
singularity model is truly a self-similar model, it gen-
erates results that are nonphysical. This model is made
more physically sound by adding a second parameter
c that reduces the fraction moved at each level of the
cascade. In this case

fo=£°% fi=fch fo=fc"

where ¢ < 1.

(8)

No singularities are generated for this model since an
insignificant amount of LWP is redistributed after a
large number of cascades. By adding this damping fac-
tor the model is no longer self-similar but multiaffine
since there is a rescaling of the amount of LWP moved
at each step of the cascade (Marshak et al. 1994). This
damping factor directly affects the amount of variabil-
ity at each scale and therefore affects the slope of the
power spectrum. The PDF of LWP generated by the
BC model is lognormal in shape.

The multiscale relationship of the BC model is illus-
trated in Fig. 10 using the multiresolution framework.
The initial uniform cloud LWP, W, corresponds to
s; (t,/27), which is the lowest resolution of the model.
The detail d;(t,2:) is generated by multiplying
s; (t,21) with f, which is the fraction moved by the first
cascade. The smoothed and detail information are com-
bined by performing an inverse transform with the Haar
wavelet. This process is equivalent to generating a sin-
gle level of the cascade model. The detail information
for the second cascade is generated by multiplying val-
ues of the smoothed information s; _,; (£, ,,-1) with f; and
repeating the inverse transform. Any level of inhomo-
geneity can be generated by repeating this process
through the desired number of iterations. The sign of
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FiG. 10. Diagram of the BC model cast into the multiresolution framework.

each coefficient in the detail information is randomly
generated and determines whether the liquid water frac-
tion is moved from right to left (positive) or from left
to right (negative). This model is classified as a mul-
tiscale statistical model on the basis of this random el-
ement. Although the PDF, spectra, and moments of the
model are deterministic, each realization of the model
is randomly generated.

Within the multiresolution framework, a number of
variants of the BC model become apparent. The sim-
plest variant comes with the choice of wavelet used in
the inverse transform step of the cascade. Since the BC
model redistributes LWP based on a Haar wavelet
function, discontinuities between adjacent regions are
generated as seen in Fig. 11a. By using a wavelet with
a higher-order approximation, such as the D8 wavelet,
the discontinuities at the boundary between adjacent
regions are removed and the smoothness of the resul-
tant LWP values is increased (Fig. 11b). As a result of
this change, the maximum value is reduced and the
skewness of the generated LWP is also reduced. A dis-
advantage of this change is the presence of negative
LWP. This represents a nonphysical condition that
must be modified in order to apply the results to radi-
ative transfer problems.

b. Variance coupled model

Two additional changes are made to the BC model
in order to define the VC model. Unlike the BC
model, where the inhomogeneity at one level is de-
pendent on the local mean, the VC model uses the
inhomogeneity at the previous level to generate the
detail information at the next level. As indicated in

the analysis of the LWP data in section 3b, the stan-
dard deviation at any particular level is well corre-
lated with the standard deviation at the previous
level. Although the mean is related to the standard
deviation at a particular level, it is not as well cor-
related and has a time-dependent element. When in-
itializing the VC model with a uniform cloud layer,
the mean LWP is used to generate inhomogeneity at
the lowest level. Once this is done, the remaining
levels of inhomogeneity are generated using only the
inhomogeneity at the previous level.

The second change in the BC model is related to the
method of redistributing the LWP. The BC model re-
distributes LWP using a deterministic fraction of the
local LWP. The random element of the model is a bi-
nomial value of either —1 or +1, which determines the
direction that the LWP is moved. The VC model uses
a Gaussian distribution of mean zero to redistribute the
LWP. The standard deviation of this distribution is de-
termined by using the ratio of standard deviation be-
tween levels and the standard deviation of the previous
level.

The VC model was developed using multiresolution
analysis and is best presented within this framework.
The model is initialized by prescribing a series of val-
ues to s;(t,,2:). As illustrated in Fig. 12, the detail at
the lowest resolution is generated from this initializa-
tion data. The detail is assumed to have a Gaussian
distribution of mean u and standard deviation &. Since
the mean of the wavelet transform is near zero, only
the standard deviation needs to be determined. The
standard deviation of the detail d, (¢,,,/) is not constant
and is calculated by multiplying a coupling factor C,
with the corresponding value in s;(z,,,7). The detail at
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the lowest resolution is then generated using the equa-
tion

di(tn) = G(07 C,u'si(tn)) +a- di(tn—-l)1 (9)

where G(u, o) is a random number with Gaussian dis-
tribution and « is an autocorrelation factor. The auto-
correlation term is included because wavelet analysis
of the LWP data indicates that a Markov process is
present at each level of the wavelet transform.

To generate the variability at the next highest level,
the standard deviation is calculated using the variability
of the current level. The standard deviation of the cur-
rent level is multiplied by the variance coupling param-
eter C,, which is the coupling between standard devi-
ations of adjacent levels of the wavelet transform. The
* detail is then generated with the equation

di_\(tanri) = G(O0, C,-0:(1,)) + a-di_ (tzn1s-1)

(k=0,1), (10)

where o, (¢,) is defined as the standard deviation of a
window of width 2\ centered about ¢, in the series
d; (t,); o;(t,) is calculated using the equations

A—1

2 (di(tn+j) - )u‘i(tn))z

J==x

oF (1) =

2 -1 (b

and

A—1

2 di(tn+j)’

==x

pi(ty) = 5= (12)

where y, (2,) is the mean over this same window. It is
necessary to calculate the standard deviation over a
window of d; (t,) in order to provide a sufficient sam-
pling and yet allow for local fluctuations in the standard
deviation. Additional levels of detail are generated us-
ing Eq. (10) since the coupling with respect to standard
deviation appears to be independent of scale. As in
multiresolution analysis, the detail information at each
level is combined with the initialization data to generate
the full resolution of the model. The choice of wavelet
for the inverse transform is an additional variable.
However, to be consistent with the analysis of the LWP
data, the D8 wavelet is used.

c. Analysis

Analysis of the BC and VC models corresponds with
that of the LWP data. The primary parameters used to
generate the models’ results include the mean, standard
deviation, and slope of the power spectrum. Values for
these parameters are recorded in Table 2 along with
other relevant parameters. An autocorrelation parame-
ter is also included for the VC model since this is not
inherently generated as in the cascade process of the
BC model.

Performing a windowed analysis on the BC model
demonstrates the correlation between mean thickness
and standard deviation. As seen in Figs. 13a,b, the
mean and standard deviation appear identical apart
from a scaling factor. This is an inherent property of
the BC model where the variance parameter f deter-
mines the ratio between these two statistics. Since in-
homogeneity is generated at each scale of the model
through the use of the local mean, correlation of stan-
dard deviation between scales is also quite strong. The
ratio of standard deviation between levels 1 and 2 is
fairly uniform apart from a certain amount of noise. A
similar relationship exists between standard deviations
at larger scales. Although the inhomogeneity at any one
level is a nonlinear combination of the mean and in-
homogeneity at all previous scales, the ratio of standard
deviation between levels is strongly influenced by the
spectral parameter.

Although the analysis of the VC model appears
markedly different from the BC model, the relationship
between scales is still present. The most prevalent dif-
ference between the two models is that the uniform
initialization field of LWP in the VC model is not
greatly redistributed (Fig. 13c). This is due primarily
to the model being initialized with 64 data points each
having a value of 100 g m™2. The standard deviation
(Fig. 13d) does show variability; however, the mag-
nitude is not as great as for the BC model. Since this
model does not force a redistribution of LWP, the fluc-
tuations in standard deviation give an indication of the
natural variability of standard deviation within the VC
model.

The standard deviation at each scale of the VC model
correlates well with the standard deviation at other
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FiG. 12. Diagram of the VC model in the multiresolution framework.

scales. This is a natural outcome of the VC model’s use
of the variance coupling parameter. Although the pa-
rameter is set at a value of 0.9, the calculated ratio of
variability between scales is 0.99. This indicates that
the ratio of standard deviation between scales is not the
best estimator of the variance coupling parameter and
a better estimator is needed. One advantage of the vari-
ance coupling parameter is that the ratio of standard
deviation between each level remains constant. This
does not exist in the BC model since the ratio decreases
as you go to higher levels in the analysis. This differ-
ence exists because the D8 wavelet used in the VC
model generates a much smoother field than the D2
wavelet of the BC model. The discontinuities generated
in the BC model introduce higher frequencies at each
level of the cascade process. This artificially enhances
the high-frequency component, and therefore, the ratio

of standard deviation between scales approaches unity
at small scales. With the VC model there is not as much
frequency leakage and the ratio of standard deviation
is maintained to the smallest scales.

The power spectrum of both models is time inde-
pendent and its slope is determined by the spectral pa-
rameter of each model. For the spectral parameters used
in Table 2 the slope of the power spectrum is —1.7 and
—1.6 for the BC and VC models, respectively. The dif-
ference in the values used for the spectral parameter of
the two models is related to the method of generating
the inhomogeneity and the wavelet used in the inverse
transform. The choice of wavelet has the most profound
effect since it is not possible for a Haar wavelet to
generate a power spectrum slope more negative than
—2 since it is a step function (Barker and Davies
1992). For particular ranges of the spectral parameter,

TABLE 2. Parameters for the BC and VC models. The number of parameters specified gives an indication
of the flexibility of the multiresolution framework for modeling.

Quantity Bounded cascade Variance coupled

Mean W=100gm™ 5:(x) =100 g m™?
Variance parameter f=06 C, = 0.06
Spectral parameter c=108 C, =09
Autocorrelation NA a=—0.3
Wavelet type Haar (D2) D8
Coupling window width 1 A=
Number of points at

initialization 1 64
Number of cascades or

levels i=14 i=

Redistribution statistic

Binomial — either —1 or +1

Gaussian-mean of zero
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the VC model as well as a modified BC model using
higher-order Daubechies wavelets are able to generate
power spectral slopes more negative than —2.

As with the slope of the power spectrum, the auto-
correlation of the wavelet transform at each level is
time independent. Results from each model have an
autocorrelation of —0.31. This corresponds to the value
of the Markov parameter used in the VC model. The
BC model generates autocorrelation through the cas-
cading process and therefore has an advantage over the
VC model since an additional parameter is not needed
to determine the autocorrelation.

The skewness of each model poses the greatest differ-
ence between the BC and VC models. As mentioned pre-
viously, the BC model inherently generates skewness
through the cascading process. Using the parameters in
Table 2, the skewness is 0.45, although it can be de-
creased by decreasing the values of both the variance and
spectral parameters. For the VC model the skewness re-
mains near zero. Apart from conditions that generate neg-

w 03
o
o 0.2

0.1 BC

0
4.0 -30 -20 10 00 1.0 20 30 4.0

Standardized Deviation

ative LWP, the skewness of the VC model is unaffected
by the choice of the variance and spectral parameters.

The effect of skewness is easily seen in-the composite
PDF of results from both models. As illustrated in Fig.
14a, the composite PDF for the BC model is clearly non-
Gaussian and is actually lognormal as a result of the cas-
cading process. This shape is present at all scales since the
fundamental cascading process does not change for smaller
scales. On the other hand, the composite PDF for the VC
model is symmetric about the mean and is nearly Gaussian
for all temporal scales (Fig. 14b). This demonstrates a
clear difference between the two models and is partially
due to the choice of wavelet and is mostly dependent on
the redistribution process of the model.

5. Discussion and summary

a. Liquid water path data

The analysis of the LWP data reveals some relation-
ships that are useful for evaluating the effectiveness of
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FiG. 14. Composite PDFs of the LWP from the (a) BC and (b) VC models.
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the two models. The most important is the relationship
between inhomogeneity at different scales. From the
windowed analysis it is evident that the inhomogeneity,
quantified by the standard deviation, is correlated to the
local mean of the LWP data. This inhomogeneity is
distributed over many scales and, through the use of
wavelet analysis, is seen to have a set relationship be-
tween scales. This relationship is quantified by defining
the ratio of standard deviation between scales. Since
this ratio has a value that is less than 1, the amount of
inhomogeneity decreases at smaller scales. This ratio
is present in the LWP data as well as in the BC and VC
models, and indicates the existence of scaling proper-
ties. Being time and scale independent, the ratio of stan-
dard deviation between scales is closely related to the
slope of the power spectrum.

Another important relationship is the presence of
skewness in the LWP data and its dependence on win-
dow size. Using a half-hour window (9-km spatial
scale), the skewness is very small and the composite
PDF is nearly a Gaussian distribution. This Gaussian
shape may not be indicative of the LWP data due to
instrument noise and limitations in the retrieval algo-
rithm. However, limiting measurements to those where
the expected noise is less than 25% of the variability
does not appreciably change the PDF. This implies that
either the inherent skewness at the small scale is rela-
tively small or the noise in the data is underestimated.
With the 2-h window (36-km spatial scale) the skew-
ness increases and noticeably affects the composite
PDF. One can only speculate on the source of this
skewness; however, a few observations can be made
when comparing the LWP data with model results. Un-
like the BC model, the presence of skewness is not
present at all scales. This implies that certain dynamic
processes that introduce skewness become important
only beyond the half-hour timescale (9-km length
scale). By comparing the time series for skewness and
the mean, the skewness appears to be largest when
cloud thickness is changing. This may indicate that the
thickening and thinning process of cloud dynamics is
nonlinear in marine stratocumulus.

b. Inhomogeneity models

Evaluation of the BC model shows that the model is
useful in capturing some very important features of the
data. This model is able to capture the correlation be-
tween standard deviation and mean as well as the cor-
relation of standard deviation between scales. Using
only two parameters, the BC model not only adds in-
homogeneity consistent with the standard deviation and
power spectrum but also reproduces the autocorrelation
and large-scale skewness that leads to a lognormal dis-
tribution of LWP. The limitations of this model are the
discontinuities generated by using a step function in the
cascade process and the presence of skewness to the
smallest scales of the model, which appears to conflict
with results from the LWP analysis.
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Results from the VC model demonstrate both
strengths and weaknesses of this model. As with the
BC model, the VC model is able to capture the corre-
lation between variability at different scales. However,
due to the redistribution process of the VC model, the
standard deviation is not as closely correlated to the
mean. The standard deviation, power spectrum, and au-
tocorrelation can all be adjusted using the parameters
of the model. The VC model is best suited for gener-
ating small-scale inhomogeneity within a known large-
scale cloud field. Although this model produces distri-
butions that are nonskewed locally, it is not able to
generate the skewness that is present at the larger scales
of the LWP data. A possibility for future work is to
make a time-dependent version of the VC model that
is able to generate skewness through the use of a non-
linear cloud development scheme.

The difference between the BC and VC models dem-
onstrates the flexibility of the multiresolution frame-
work for modeling cloud inhomogeneity. A number of
variants to the BC model are implied by this research,
such as the change in the cascading wavelet and the
random number generator function. Although a high
correlation exists between inhomogeneity at adjacent
scales, the method for generating this correlation can
take a variety of forms. Finally, the multiresolution
framework has an analogous two-dimensional form
that provides a means of extending these inhomoge-
neity models into higher dimensions.

Both models involved in this study use fractal prin-
ciples to generate cloud inhomogeneity. As seen in the
analysis of the LWP data and the inhomogeneity mod-
els, one way in which this principle manifests itself is
in the correlation of inhomogeneity at different scales.
This provides not only a method of generating a con-
sistent PDF but also a constraint when adding inho-
mogeneity into a known cloud LWP field. This feature
may not be important in general circulation models
where knowledge of the PDF appears to be sufficient
for calculating radiative fluxes (Cahalan 1994b). How-
ever, consistent spatial distribution becomes important
when calculating the radiance of a cloud field for re-
mote sensing applications. In this later application the
BC and VC models may prove useful for incorporating
subresolution cloud inhomogeneity.
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